The Perfection of Gas and the Greatness of Organic Compounds

Just like Olympic judges, chemists have established a set of attributes that describe perfection so that we measure everything else relative to an impossible standard. The Ideal Gas is purely hypothetical; consisting of identical particles of zero volume with no intermolecular forces. This approach struck me as arrogant until I understood that Gas Laws that followed:

1. Graham’s Law: rate of movement is proportional to mass

2. Dalton’s Law: total pressure is the sum of individual pressures

3. Boyle’s Law: volume varies with pressure (at constant temperature)

4. Charles’s Law: volume varies with temperature (at constant pressure).

The early chemists weren’t just Photoshopping. By imagining perfection, they found a way  to describe reality.

The reality of my upcoming exam pushed me to finish the final chapter which was Organic Chemistry, the study of compounds that contain carbon. These compounds are deemed ‘organic’ because carbon was originally obtained from the remains of living things, like coal. The carbon atom of today is the backbone of thousands of compounds that keep us warm, healthy, clothed, and together. Travel and romance would be nothing without carbon.

What makes carbon great is its four outer electrons that are able to form single, double, and even triple bonds. And bond it does, creating almost endless chains of molecules that are used to make fuel, medicine, textiles, and adhesives. The same atom is responsible for the diamonds in my wedding band and the gasoline in my car.

Maybe perfection and greatness are closer than I imagined.

Next up: The Last Lap

Changes in Attitude, Latitude, and Phases

The weather this week really helped increase my study time. If I hadn’t had a dog to walk (or West Wing on Netflix) I probably would have finished the entire Chemistry section.

Energy can be put to many uses and this lesson was about using it to change phases of matter. We can calculate the energy (q) , or heat, required to change the temperature of any material with a simple equation:

q = (m) x (Cp) x (Change in Temperature).

Cp is a constant value related to the material, specific heat, and m is the amount of material, or mass. In other words, temperature changes linearly with heat, which is obvious and beyond boring.

What gets interesting is the action during phase changes. As the energy changes, there is no corresponding change in temperature. Boiling water will stay at 100 degrees Celsius and a slushy ice mix will stay at 0 degrees no matter how much heat is added. The temperature does not change because all of the energy is being used to pull apart the intermolecular bonds which, like bad habits, are tough to break.

The energy needed to muster through a phase change is ‘heat of vaporization’, ‘heat of fusion’, or sheer will power. It is substantially higher that what’s needed to change temperature. Only after all the ice is melted or all the boiling water is evaporated will the temperature once again rise in a linear but boring fashion.

There are two simple equations:

q = (m) x (heat of fusion) when moving from a solid to a liquid and

q = (m) x (heat of  vaporization) when moving from a liquid to a gas,

and I am struck by two simple truths:

1. It takes a lot less energy to change outwardly than inwardly.

2. Transformation starts at the smallest level and for a while there are no signs.

Next Up: The Perfection of Gas and the Greatness of Organic Compounds

Related Articles:

Life, Death, and Chemistry

Look around – can you imagine how many chemical reactions are happening before your eyes at this very moment? Some materials are synthesizing and some are decomposing. Some compounds are swapping molecules and some may combust. Without these reactions and our ability to predict them, there would be a smaller staff at Downton Abbey, tonic would stay fizzy, nausea would last, and the New Year would be quiet.

The most important example of synthesis occurs when hydrogen and oxygen molecules combine to make water. This is as simple and profound as creation itself. A less inspirational example of synthesis is the formation of tarnish that occurs when silver reacts with sulfur in the air to make silver sulfide. Chemists call this 2Ag + S —> Ag2S and Lord Grantham calls it a steady job.

A sad example of decomposition is the spontaneous decay of carbonic acid (H2CO3) into carbon dioxide (CO2) and water. This is why that large bottle of tonic that you have been saving for the summer G&T’s may ultimately disappoint: H2CO3 ——> CO2 + H2O.

The most interesting reactions happen when compounds swap, or replace, molecules to form new substances. Hydrochloric acid (HCl) in the stomach makes us queasy until calcium hydroxide (Ca(OH)2) arrives. Oh what a relief it is when the acid is neutralized into two products that are much easier on the stomach: calcium chloride (CaCl2) and water,  2(HCl) + Ca(OH)2 ———> CaCl2 + 2(H2O).

For sheer drama, however, no reaction can match combustion. Fireworks are made with gunpowder that produces  heat and noise and metals that produce color. Copper shows blue, lithium and strontium red, and magnesium and aluminum are white when combusted. Combustion reactions produce much more energy than is required to start them and they need a lot of oxygen. Drama turns to danger when materials spontaneously combust, which happens when enough heat is generated by the reaction to ignite the materials at hand. This can happen with the right combination of microbes, moisture, heat and hay.

The laboratory of my life got a lot more reactive this week as I am making plans to use my favorite Christmas gift:  a Chemistry Set with enough equipment and reagents to conduct 333 experiments. My husband (aka Santa) has offered to help me set up an area in the garage and has even volunteered to be my assistant on the condition that I call him ‘Igor’. It’s all about the chemistry.

One Week, Two Tests, and End Behavior

Stop the presses – I was out sick last week! But at least with on-line study I didn’t have to bring the teacher a note from the doctor and at my age I didn’t have to convince my parents that I was too sick to study. By Monday I was back at it, fueled by test anxiety and dreams of greatness.

I did much better this time on my chapter test, mostly due to over-preparation. I did not realize that the test materials included the Periodic Table, a List of Equations, and the Standard Reduction Potentials. On my next test I will have to strike a medium between the extremes of over-kill and under-prep but for now I’m enjoying the small victory.

Another test that I passed was a day of substitute teaching four levels of algebra at a local rural high school. In preparation, I observed the teacher for a day and met with him twice to create the lesson plans. I taught 6 classes, answered questions, gave 2 tests, fixed laptops, ate lunch in 20 minutes, calmed down some rowdies, and learned a lot about quadratic equations. Watching the students, I felt sympathetic when I recognized some of my own testing extremes. At the end of the day I had many more questions about teaching than I had in the morning.

My favorite concept of the day was End Behavior. This is the question: For any given function, what does ‘Y’ do when ‘X’ approaches positive and negative infinity? It’s difficult to imagine the ends without knowing the middle, especially when most functions, like life, are not linear. So next week I’ll stay in the middle, prepare for the next tests, and leave infinity to the mathematicians.

Next Up: The Ties That Bind

Are you ready for the country?

At 55 I have left corporate life and the city of Chicago behind. I want to use my love of chemistry and my engineering degree outside of the cubicle farms of the world’s largest oil company. I have moved, along with my husband, horses, dog and cat, to the real farms of rural Missouri.  As Neil Young wrote; “Because it’s time to go.”

I have limited platform skills, an unremarkable voice, and no classroom experience. However, I have organization skills and a good work ethic so that will have to suffice. Today I enrolled in the program offered by the American Board for Certification of Teacher Excellence (ABCTE) because it is on-line and recognized in the state of Missouri.

I am writing this blog for two reasons:

1. to help me reflect as I learn about teaching

2. to connect with others on this path.

Next step: Orientation.

Getting to Know You

Getting to Know You